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This course is divided into three chapters. The first collects some basic tools from
linear algebra. The second is devoted to the Singular Value Decomposition and its
application to the resolution of inverse problems and to the Principal Component Anal-
ysis. The third chapter deals with matrix norms which are used to define low rank
projections and study the conditioning of linear systems. The content of these notes is
mostly based on:

1. Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013

2. Gilbert Strang. Linear algebra and its applications. Belmont, CA: Thomson,
Brooks/Cole, 2006

plus additional references in the notes.

Throughout the course we will use the following notation:

• K denotes the field R or C;

• E,F, . . . denote vector spaces over K;

• L(E,F ) denotes the space of linear maps from E to F ;

• L(E) denotes the space of linear maps from E to E;

• Mm,n(K) denotes the spaces of matrices over K with m rows and n coloumns;

• Mn(K) denotes the spaces of matrices over K with n rows and n coloumns;
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1 Basic facts from Linear Algebra

1.1 Linearly independent vectors and bases

Given a vector space E over K, a set of vectors {e1, . . . , en} ⊂ E is linearly dependent
if there exist n scalars α1, . . . , αn ∈ K not all zero, such that

∑
i αiei = 0. The set is

linearly independent if no such collection of scalars exists. A set of n linearly independent
vectors {e1, . . . , en} is a basis of E if for any x ∈ E, {x, e1, . . . , en} is linearly dependent,
or equivalently if any vector x of E can be expressed as a linear combination of vectors
in the set e = {e1, . . . , en}:

x =
n∑
i=1

αiei

with αi ∈ K. In this case, the collection of scalars α = (α1, . . . , αn) ∈ Kn is uniquely
defined. Such vector is the vector of coordinates of x with respect to the basis e and we
will also denote it as follows:

[x]e = α .

Given a vector x ∈ Kn, we will usually denote by xi the ith coordinate of x with respect
to the canonical basis {e1, . . . , en} defined by e1 = (1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1).

The dimension of the vector space E is the maximal number of linearly independent
vectors in E, or equivalently the number of vectors in any basis of E.

1.2 Norms, inner products and orthogonality

Definition 1.2.1 (Norm). A norm on a vector space E over K is a function ‖ · ‖ : E →
R+ verifying the following properties:

• (Positive definiteness) ∀x ∈ E , ‖x‖ ≥ 0 and ‖x‖ = 0 ⇐⇒ x = 0;

• (1-Homogeneity) ∀x ∈ E , ∀λ ∈ K , ‖λx‖ = |λ|‖x‖;

• (Triangular inequality) ∀x, y ∈ E , ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Example (p-norms on Kn). For p ≥ 1, the p-norm of x = (x1, . . . , xd) ∈ Kd is defined
by:

‖x‖p :=

(
n∑
i=1

|xi|p
)1/p

We also define the maximum norm by: ‖x‖∞ := max{|x1|, . . . , |xn|}.

Definition 1.2.2 (Equivalent norms). Two norms ‖ · ‖ and ‖ · ‖′ on a K-vector space
E are equivalent if and only if there exists a constant C > 0 such that for all x ∈ E,
‖x‖ ≤ C‖x‖′ and ‖x‖′ ≤ C‖x‖.
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Theorem 1.2.3. All norms on a finite-dimensional vector space over K are equivalent.

Norms allow us to quantify the intensity of vectors and to introduce a notion of
convergence. Given a normed vector space (E, ‖ · ‖), a sequence (xk)k∈N ⊂ E converges
to x, if and only if

lim
n→∞

‖xk − x‖ = 0 .

If E is finite-dimensional, convergence of a sequence on E with respect to a norm implies
convergence with respect to any other norm.

Definition 1.2.4 (Inner product). An inner product on a real vector space E is a map
〈·, ·〉 : E × E → R satisfying the following properties:

• (Bilinearity) ∀x, y, z ∈ E, ∀λ ∈ R,

〈x+ λy, z〉 = 〈x, z〉+ λ〈y, z〉,

〈x, y + λz〉 = 〈x, y〉+ λ〈x, z〉;

• (Symmetry) ∀x, y ∈ E, 〈x, y〉 = 〈y, x〉;

• (Positive definiteness) ∀x ∈ E, 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = 0.

If E is a complex vector space an inner product is a map 〈·, ·〉 : E × E → C, and the
first two properties are replaced by:

• (Sesquilinearity) ∀x, y, z ∈ E, ∀λ ∈ C,

〈x+ λy, z〉 = 〈x, z〉+ λ〈y, z〉,

〈x, y + λz〉 = 〈x, y〉+ λ〈x, z〉;

• (Hermiticity) ∀x, y ∈ E, 〈x, y〉 = 〈y, x〉.

Example. Here are some important examples of inner products:

• Canonical inner product on Rn: x = (xi)i, y = (yi)i ∈ Rn , 〈x, y〉 :=
∑

i xiyi

• Canonical inner product on Cn: x = (xi)i, y = (yi)i ∈ Rn , 〈x, y〉 :=
∑

i xiyi

• L2 inner product on C([0, 1]): f, g ∈ C([0, 1]), 〈f, g〉 :=
∫ 1

0 f(t)g(t) dt.

Proposition 1.2.5. Let E be a vector space over K equipped with an inner product
〈·, ·〉E, then the map ‖ · ‖E : E → R+ defined by ‖x‖E =

√
〈x, x〉E, for all x ∈ E, is a

norm.

Example. The norm ‖ · ‖2 is the norm induced by the canonical inner product on Kn.

Note that the fact that ‖ · ‖E verifies the triangular inequality can be easily deduced
from the Cauchy-Schwarz inequality:
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Proposition 1.2.6 (Cauchy-Schwarz inequality). For any x, y ∈ E,

|〈x, y〉E | ≤ ‖x‖E‖y‖E
with equality if an only if x and y are linearly dependent.

Inner products allow us to quantify how different two vectors are in terms of their
relative orientation. Two vectors x, y ∈ E are orthogonal with respect a given inner
product 〈·, ·〉, if 〈x, y〉 = 0. Note that this notion is not preserved in general if one
chooses a different inner product.

Definition 1.2.7 (Orthonormal basis). Let E be an n-dimensional K-vector space
equipped with an inner product 〈·, ·〉E . An orthonormal basis of E is a set of vectors
{e1, . . . , en}, with ei ∈ E, which form a basis of E and that are mutually orthogonal,
i.e., such that 〈ei, ej〉E = δi,j for all 1 ≤ i, j ≤ n, where δi,j denotes the Kronecker delta
(δi,j = 1 if i = j, and δi,j = 0 otherwise).

Given any basis of E one can construct an orthonormal basis using the Gram-
Schimdt orthogonalization process. Specifically, given a basis {u1, . . . , un} of E, this
consists in defining e1 = u1/‖u1‖E and then iteratively

ẽk+1 = uk+1 −
k∑
i=1

〈ek, uk+1〉Eek , ek+1 =
ẽk+1

‖ẽk+1‖E
.

Consider any vector x ∈ E and an orthonormal basis {e1, . . . , en} of E. Then since
e is a basis, x =

∑n
i=1 αiei where the scalars αi are uniquely defined. Taking the inner

product with ej from the left we get αj = 〈ej , x〉E for al 1 ≤ j ≤ n, or equivalently

[x]e = (〈e1, x〉E , . . . , 〈en, x〉E) or x =

n∑
i=1

〈ei, x〉Eei . (1.2.1)

Example. The canonical basis e = {e1, . . . , en} of Kn, defined by e1 = (1, 0, . . . , 0),
e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1), is orthonormal with respect to the canonical
inner product.

Application: Discrete Fourier Transform

The discrete Fourier transform (DFT) can be interpreted as a change of basis on Cn from
the canonical basis e to new orthormal basis u = {u1, . . . , un} where for 0 ≤ k ≤ n− 1,

uk+1 =
1√
n

(
1, exp

(
i
2πk

n

)
, . . . , exp

(
i
2πk

n
(n− 1)

))
=

n−1∑
j=0

exp

(
i
2πk

n
j

)
ej+1.

(1.2.2)
The orthonormality can be verified using the explicit expression for the geometric sum.
Note also that for all 0 ≤ j ≤ n− 1 and 1 ≤ k ≤ n− 1,

exp

(
−i2πk

n
j

)
= exp

(
i2πj − i2πk

n
j

)
= exp

(
i
2π(n− k)

n
j

)
=⇒ uk+1 = un−k+1

(1.2.3)
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where the complex conjugate is intended component-wise. A graphical representation
of this basis for n = 6 is represented in Figure 1.1.

The DFT of a signal x ∈ Cn, denoted DFT(x) = x̂ ∈ Cn, is the vector of coordinates
of x with respect to the basis u, i.e.

DFT(x) = x̂ := [x]u.

By the orthonormality of the basis the coordinates x̂k can be easily computed:

x =
n∑
j=1

x̂juj =⇒ [DFT(x)]k+1 = x̂k+1 = 〈uk+1, x〉 =
1√
n

n−1∑
j=0

exp

(
−i2πk

n
j

)
xj+1.

If x is real, then x̂1 = n−1/2
∑

i xi is real and by (1.2.3), for all 1 ≤ k ≤ n− 1,

x̂k+1 = 〈uk+1, x〉 = 〈un−k+1, x〉 = x̂n−k+1 .

The inverse DFT maps the vector of coordinates x̂ with respect to the basis u to the
vector of coordinates of x with respect to the canonical basis, i.e. DFT−1(x̂) = x ∈ Cn.
More explicitly, this is computed as follows

[DFT−1(x̂)]j+1 = xj+1 = 〈ej+1, x〉 = 〈ej+1,
n−1∑
k=0

x̂k+1uk+1〉 =
1√
n

n−1∑
k=0

exp

(
i
2πk

n
j

)
x̂k+1.

1.3 Orthogonal subspaces and projections

Let E be a vector space over K equipped with an inner product 〈·, ·〉E . Given a subspace
G ⊂ E, we denote by G⊥ the subspace of E whose vectors are orthogonal to those in
G:

G⊥ := {x ∈ E : 〈x, y〉E = 0 ∀ y ∈ G}.

Note that G⊥ ∩G = {0}. If E is finite-dimensional, we can pick an orthonormal basis
{e1, . . . , ek} of G and for any vector of x ∈ E, we define the orthogonal projection onto
G by

ProjG(x) :=

k∑
i=1

〈ei, x〉Eei

and one can verify easily that this definition does not depend on the choice of the basis.
In fact, given a different orthonormal basis {ẽ1, . . . , ẽn}, we can write ei =

∑
j〈ẽj , ei〉E ẽj ,

and therefore

k∑
i=1

〈ei, x〉Eei =

k∑
i=1

〈
k∑
j=1

〈ẽj , ei〉E ẽj , x〉Eei =

k∑
j=1

〈ẽj , x〉E
( k∑
i=1

〈ẽj , ei〉Eei
)

=

k∑
j=1

〈ẽj , x〉E ẽj

5



u1

u2

u3

u4

u5

u6

Re(ui) Im(ui)

Figure 1.1: Graphical representation of the DFT basis for n = 6. The y axis coordinates
of the black dots correspond to the components of the vectors ui (ordered from left to
right). Note that (u2)j = (u6)j , (u3)j = (u5)j and (u4)j = (u4)j for all 1 ≤ j ≤ 6.
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Moreover one can show that the orthogonal projection of x onto G minimizes is the
vector in G minimizing its distance from x as measured by the norm ‖ · ‖E , i.e.,

ProjG(x) = arg min
u∈G
‖u− x‖E .

Defining v := x − ProjG(x), then v ∈ G⊥. This means that any vector x ∈ E can
be decomposed as x = u+ v where u ∈ G and v ∈ G⊥, and

‖x‖2E = ‖u‖2E + ‖v‖2E .

The decomposition is unique, since x = u+ v implies that u = ProjG(x) by computing
the coordinates of u with respect to any orthonormal basis. In other words we have
G⊕G⊥ = E, and therefore (G⊥)⊥ = G.

Application: Linear denoising

Let f c : [0, T ]→ C be a continuous time signal, and for a given N ≥ 2, let

f = (f c(0), f c(τ), . . . , f c(T )) ∈ CN

where τ = T/(N − 1). Suppose that we only have access to a noisy version of this
sampled signal, denoted

f̃ := f + w

where w is a random vector, and its components are independent and normally dis-
tributed according to N (0, σ2). This is the simplest model for noise, usually called
additive white Gaussian noise.

Let e = {ei}i be an orthonormal basis for CN , and define for any g ∈ CN

gM =

M∑
i=1

〈ei, g〉ei

i.e. uM is the orthogonal projection onto the space spanned by {ei}Mi=1. The following
result (taken from [2]) shows that if the coefficients of f with respect with respect to
the basis e decay sufficiently fast, we can regard f̃M as a good approximation of f when
M is sufficiently large. Specifically, even if E(‖f − f̃‖) = Nσ2 grows with N , we show
that E(‖f − f̃M‖) can be bounded uniformly with respect to N .

Proposition 1.3.1. Suppose that the original sampled signal verifies

‖f − fM‖2 ≤ CM−2β (1.3.1)

for some constants C, β > 0 and all M . Then, if M = C
1

1+2β σ
− 2

1+2β ,

E(‖f − f̃M‖2) ≤ 2C
1

1+2β σ
2(1− 1

1+2β
)

7



Proof. Using the fact that E(|〈ei, w〉|2) = σ2 (which can be verified by direct computa-
tion), we obtain

E(‖f − f̃M‖2) = E(

M∑
i=1

|〈ei, f − f̃〉|2) + E(
∑
i>M

|〈ei, f〉|2)

= E(

M∑
i=1

|〈ei, w〉|2) +
∑
i>M

|〈ei, f〉|2

= Mσ2 + ‖f − fM‖2 ≤Mσ2 + CM−2β

and replacing the formula for M we obtain the result.

When using the DFT basis u, one usually defines for M = 1 + 2K,

gM = 〈u1, g〉u1 +

K∑
i=1

(〈ui+1, g〉ui+1 + 〈uN−i+1, g〉uN−i+1)

for all g ∈ CN , which just corresponds to a different ordering of the basis. In this case
fM captures the low frequency content of the signal and the estimates (1.3.1) holds as
long as f is sufficiently smooth and M and N are sufficiently large (a more in depth
discussion on these issues can be found in [2]).

1.4 Linear maps, range and kernel

Given two vector spaces E and F over K, a linear map is a function L : E → F such
that

L(αx+ βy) = αL(x) + βL(y)

for all α, β ∈ K and x, y ∈ E.

Example. Here are some examples of linear maps:

• let σ : {1, . . . , n} → {1, . . . , n} a permutation, the following map is linear

L : (α1, . . . , αn) ∈ Kn → (ασ(1), . . . , ασ(n)) ∈ Kn ;

• for any k ≥ 1, let Ck(R) the space of real-valued functions with continuous kth

derivatives, then the following map is linear

L : f ∈ Ck(R)→ f ′ ∈ Ck−1(R);

• for any k ≥ 0, the following map is linear

L : f ∈ Ck(R)→ g ∈ Ck+1(R) where g(x) =

∫ x

0
f(s)ds .
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The range and kernel of a linear operator from E to F are particular subspaces of
E and F , respectively, denoted by Im(L) and Ker(L), and defined as follows:

Definition 1.4.1. Let L ∈ L(E,F ). We define:

Ker(L) := {x ∈ E : L(x) = 0} ⊂ E ,

Im(L) := {L(x) ∈ F : x ∈ E} ⊂ F .

1.5 Linear maps on finite dimensional spaces

Linear maps on a finite-dimensional inner product space (E, 〈·, ·〉E) with values in K
can always be represented as the inner product with a fixed vector in E:

Theorem 1.5.1 (Finite dimensional Riesz representation theorem). Let E a finite
dimensional K-vector space equipped with an inner product 〈·, ·〉E, and L ∈ L(E,K) a
linear map. Then, there exists a unique yL ∈ E such that

L(x) = 〈yL, x〉E ∀x ∈ E .

Proof (Sketch). One needs to find a yL ∈ E verifying this expression by computing its
coordinates with respect to an orthonormal basis of E, and then prove it is unique.

The above result allows us to introduce the notion of adjoint:

Theorem 1.5.2 (Adjoint of a linear operator). Let E and F be two finite dimensional
vector spaces over K equipped with inner products 〈·, ·〉E and 〈·, ·〉F , and let L ∈ L(E,F ),
then there exists a unique map L∗ ∈ L(F,E) verifying:

〈L∗(y), x〉E = 〈y, L(x)〉F ∀x ∈ E , ∀ y ∈ F

Such a map is called the adjoint of L.

Proof. For a given y ∈ F , consider the linear operator Ty ∈ L(E,K) defined by Ty(x) =
〈y, L(x)〉F . By the Riesz represenation theorem there exists a unique vector L∗(y) ∈ E
such that 〈L∗(y), x〉E = 〈y, L(x)〉F for all x ∈ E. This defines the map L∗ : F → E,
and one can easily verify that this map is linear.

Note that by definition (L∗)∗ = L. Furthermore, in the finite dimensional setting
range and kernel of L and its adjoint L∗ can be related explicitly:

Theorem 1.5.3. In the setting of Theorem 1.5.2,

Ker(L) = Im(L∗)⊥ , Im(L) = Ker(L∗)⊥ .
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Proof. Since (L∗)∗ = L, it suffices to prove just one of the two statements. We have

x ∈ Im(L∗)⊥ ⇐⇒ 〈x, L∗y〉 = 0 ∀y ∈ F
⇐⇒ 〈Lx, y〉 = 0 ∀y ∈ F
⇐⇒ x ∈ Ker(L) .

Theorem 1.5.4 (Rank-nullity theorem). Let L ∈ L(E,F ) with dim(E) = n. Then,

dim(Ker(L)) + dim(Im(L)) = n.

Definition 1.5.5 (Self-adjoint operator). A linear operator L ∈ L(E) is self-adjoint if
and only if L = L∗.

Example. The simplest example of self-adjoint operator is the identity operator IE : x ∈
E → x ∈ E.

1.6 Matrix representations of linear maps

Given two vector spaces E and F over K of dimensions n and m, respectively, two
(ordered) basess e = {e1, . . . , en} and f = {f1, . . . , fm} of E and F , respectively, and a
linear operator L ∈ L(E,F ), there exist unique scalars ai,j ∈ K such that

L(ej) =
m∑
i=1

ai,jfi for 1 ≤ j ≤ n

The matrix representation of L ∈ L(E,F ) with respect to the bases e and f is the
matrix [L]e,f := A = (ai,j)i,j ∈Mm,n(K), or more explicitly

[L]e,f :=

 [L(e1)]f [L(e2)]f · · · [L(en)]f


where [L(ei)]f ∈ Km is the vectors of coordinates of L(ei) with respect to the basis f .

Then if u =
∑n

i=1 αiei ∈ E and L(u) =
∑m

i=1 βifi ∈ F , we have β = Aα, where
α = (α1, . . . , αn)T and β = (β1, . . . , βn)T , or equivalently:

[v]f = [L]e,f [u]e .

Note that if f is an orthonormal basis, by equation (1.2.1) we simply have

ai,j = 〈fi, L(ej)〉 .

It is easy to verify that the following properties hold:
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1. For all L1 ∈ L(E,F ) and L2 ∈ L(F,G), and any bases e, f , g of E, F , and G,
respectively,

[L2 ◦ L1]e,g = [L2]f ,g[L1]e,f .

2. If L ∈ L(E,F ) is invertible then for any bases e, f of E and F , respectively,

[L−1]f ,e = [L]−1
e,f .

3. For any L ∈ L(E,F ) and any bases e, f ,

dim(Ker(L)) = dim(Ker([L]e,f )) , dim(Im(L)) = dim(Im([L]e,f )) .

Example. Consider the linear operator Rα : R2 → R2 describing an anti-clockwise
rotation of α rad. Then, denoting by e the canonical basis,

[Rα]e,e =

[
cos(α) − sin(α)
sin(α) cos(α)

]
.

Example. The matrix of the identity map Id ∈ L(E) with respect to any basis e of E
is the identity matrix, i.e. [Id]e,e = I = (δi,j)i,j , where δi,j denotes the Kronecker delta
(δi,j = 1 if i = j, and δi,j = 0 otherwise).

Remark 1.6.1. To any matrix A ∈Mm,n(K) one can associate a linear operator

LA : x ∈ Kn → Ax ∈ Km .

Then A is the matrix of LA with respect to the canonical bases on Kn and Km.

1.7 Special matrices and maps

Definition 1.7.1 (Transpose and adjoint of a matrix). Let A ∈Mm,n(K), then

• the transpose of A is the matrix AT ∈ Mn,m(K) of coefficients aTi,j verifying

aTi,j = aj,i for all 1 ≤ i, j ≤ n. A is symmetric if and only if AT = A;

• the adjoint of A is the matrix A∗ ∈Mn,m(K) of coefficients a∗i,j verifying a∗i,j = aj,i
for all 1 ≤ i, j ≤ n. A is hermitian if and only if A∗ = A.

Proposition 1.7.2. For any A ∈Mm,n(K), we have

〈x,Ay〉 = 〈A∗x, y〉 , ∀x ∈ Km, y ∈ Kn

where 〈·, ·〉 is the canonical inner product on Kn or Km.

In other words, the adjoint of the linear operator LA : x ∈ Kn → Ax ∈ Km with
respect to the canonical inner product is

L∗A = LA∗ , where LA∗ : y ∈ Km → A∗y ∈ Kn .
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Remark 1.7.3 (Self-adjoint maps vs hermitian matrices). Note that if L ∈ L(E) is a
self-adjoint map, the matrix of L with respect to a given basis e, [L]e,e, is not necessarily
hermitian. Vice-versa, if [L]e,e is hermitian, the map L ∈ L(E) may not be self-adjoint.
However, if e is an orthonormal basis, A = [L]e,e is hermitian if and only if L is self-
adjoint, since in this case

ai,j = 〈ei, L(ej)〉 = 〈L(ei), ej〉 = aj,i .

Definition 1.7.4 (Orthogonal/Unitary matrices). Q ∈ Mn(R) is orthogonal if and
only if QT = Q−1. Q ∈Mn(C) is unitary if and only if Q∗ = Q−1.

Example. The matrix representation of the rotation map [Rα]e,e from Example 1.6 is
orthogonal.

It is easy to verify that any unitary/orthogonal matrices Q verify the following
important properties:

1. The rows and columns of Q form an orthonormal basis of Kn with respect to the
canonical inner product.

2. The (unitary) transformation LQ : x ∈ Kn → Qx ∈ Kn induced by a unitary
matrix Q preserves lengths as measured by the Euclidean norm ‖ · ‖2, i.e.

‖LQ(x)‖2 = ‖Qx‖2 = ‖x‖2 , ∀x ∈ Kn.

3. The (orthogonal) transformation LQ : x ∈ Rn → Qx ∈ Rn induced by an or-
thogonal matrix Q preserve the angle θx,y between any two vectors x, y ∈ Rn,
i.e.

θx,y := arccos

(
〈x, y〉
‖x‖2‖y‖2

)
= arccos

(
〈Qx,Qy〉
‖Qx‖2‖Qy‖2

)
.

4. The product of orthogonal (resp. unitary) matrices is orthogonal (resp. unitary).

1.8 Eigenvectors and eigenvalues

Definition 1.8.1 (Eigenvectors, eigenvalues and spectrum). Let A ∈Mn(C). A scalar
λ ∈ C is an eigenvalue of A if and only if there exists a vector v ∈ Cn \ {0} such that

Av = λv .

In this case, we say that v is the eigenvector associated with λ. The spectrum of A is
the set Sp(A) of all the eigenvalues of A.

Equivalently, the eigenvalues are the scalars λ such that Ker(A− λI) 6= {0}. More-
over, the eigenvectors associated with an eigenvalue λ are precisely the elements of
Ker(A− λI) \ {0}. Therefore we have:
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Theorem 1.8.2. The eigenvalues of A ∈ Mn(C) are the roots of the characteristic
polynomial

det(A− λI) = 0 .

Corollary 1.8.3. A matrix A ∈Mn(C) has at least one and at most n distinct eigen-
values.

Definition 1.8.4 (Spectral radius). The spectral radius of a matrix A ∈ Mn(C) is
defined as follows:

ρ(A) := max
λ∈Sp(A)

|λ| ∈ R+

1.9 Diagonalization and spectral theorem

Some special matrices. Let A ∈Mn(K),

• A is diagonal if ai,j = 0 if i 6= j;

• A is upper triangular if ai,j = 0 if i > j;

• A is lower triangular if ai,j = 0 if i < j;

Definition 1.9.1 (Diagonalizable matrix). Let A ∈Mn(C). A is diagonalizable if and
only if there exists an invertible matrix S ∈Mn(C) and a diagonal matrix D ∈Mn(C)
such that A = SDS−1.

Theorem 1.9.2 (Diagonalization). Let A ∈Mn(C). A is diagonalizable if and only if
it has n linearly independent eigenvectors {v1, . . . , vn}. Then

A = SDS−1

where D is a diagonal matrix such that, for all 1 ≤ i ≤ n, Dii is the eigenvalue associated
to the eigenvector vi and the ith column of S is vi.

Proof. It suffices to observe that {v1, . . . , vn} is a set of linearly independent eigenvectors
if and only if the matrix S defined in the statement is invertible, and there exists a
diagonal matrix D such that AS = SD.

Remark 1.9.3. Invertible 6= diagonalizable. Consider for example the matrix:

A =

[
1 1
0 1

]
.

This is invertible and it has one eigenvalues λ = 1 which is a double root of the
characteristic polynomial. However the eignevectors span a one dimensional space
Ker(A − I) = span{(0, 1)} so A cannot be diagonalizable. On the other hand, the
null matrix is diagonal but not invertible.
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Corollary 1.9.4. If all eigenvalues of A ∈Mn(C) are distinct then A is diagonalizable.

Proof. We need to prove that given n eigenvectors v1, . . . , vn associated with the n
distinct eigenvectors λ1, . . . , λn then these are linearly independent. If this was not the
case, we can suppose that v1, . . . , vm are linearly independent with 1 ≤ m < n and that
there exists constants α1, . . . , αm not all zero such that

vm+1 =
m∑
i=1

αivi .

Then

Avm+1 = A

m∑
i=1

αivi =

m∑
i=1

αiλivi

and

Avm+1 = λm+1vm+1 =

m∑
i=1

αiλm+1vi

Subtracting the two equations we get

m∑
i=1

αi(λm+1 − λi)vi = 0

with λm+1 − λi 6= 0 for all 1 ≤ i ≤ m, which is a contradiction since {v1, . . . , vm} was
supposed linearly independent.

Theorem 1.9.5 (Schur). Let A ∈ Mn(C), then there exists a unitary matrix Q ∈
Mn(C) and an upper triangular matrix T ∈Mn(C) such that A = QTQ−1.

Theorem 1.9.6 (Spectral theorem). Let A ∈Mn(C) be hermitian. Then,

• all eigenvalues of A are real;

• A has n mutually orthogonal eigenvectors;

• there exists a unitary matrix Q ∈ Mn(C) such that A = QDQ∗ where D is
diagonal and real, and Q is real if A is real.

Application: Convolution and DFT

Given two vectors h = (hi)i, x = (xi)i ∈ Kn, the cyclic (or periodic) convolution of h
and x is the vector h ∗x ∈ Kn whose (i+ 1)th coordinate (h ∗x)i+1 (with respect to the
canonical basis) is

(h ∗ x)i+1 :=
n−1∑
j=0

xj+1h(i−j)n+1 (1.9.1)

where (k)n := kmodn for all k ∈ N. Setting k = (i − j)n in equation (1.9.1), we find
j = (i− k)n and therefore h ∗ x = x ∗ h.
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The map convh : x→ h ∗ x is linear. Moreover, suppose that for all 0 ≤ i ≤ n− 1

h(i)n+1 = h(−i)n+1, (1.9.2)

then convh is self-adjoint since for all x, y ∈ Kn

〈h ∗ x, y〉 =

n−1∑
i=0

n−1∑
j=0

xj+1h(i−j)n+1 yi+1 =

n∑
j=0

xj+1

(
n−1∑
i=0

yi+1h(j−i)n+1

)
= 〈x, h ∗ y〉 .

The same can be seen from the matrix representation of convh with respect to the
canonical basis e, which is the circulant matrix Ch given by

Ch = [convh]e,e =

 [Ch(e1)]e [Ch(e2)]e · · · [Ch(en)]e

 =


h1 hn · · · h2

h2 h1 · · · h3
...

...
. . .

...
hn hn−1 · · · h1

 .
One has that

h ∗ x = DFT−1(
√
nDFT(h)�DFT(x)) (1.9.3)

where � denotes the componentwise multiplication. In fact,

[DFT(h ∗ x)]k+1 =
1√
n

n−1∑
j=0

n−1∑
l=0

xl+1h(j−l)n+1 exp

(
−i2πk

n
j

)

=
1√
n

n−1∑
j=0

n−1∑
l=0

xl+1 exp

(
−i2πk

n
l

)
h(j−l)n+1 exp

(
−i2πk

n
(j − l)

)

Renaming q = (j − l)n we get

[DFT(h ∗ x)]k+1 =
1√
n

n−1∑
q=0

n−1∑
l=0

xl+1 exp

(
−i2πk

n
l

)
hq+1 exp

(
−i2πk

n
q

)
=
√
n [DFT(h)]k+1[DFT(x)]k+1

Denoting by U ∈ Mn(K) the unitary matrix whose columns are the vectors u1, . . . , un
defined in (1.2.2), equation (1.9.3) can be equivalently written as a diagonalization of
the matrix Ch:

Ch = Udiag(
√
n ĥ)U∗ (1.9.4)

where ĥ = DFT(h).
Note that if h verifies (1.9.2), then Ch is hermitian and one can verify that ĥ ∈ Rn

by definition of the DFT. On the other hand, if h does not verify (1.9.2) Ch is not
unitary but the decomposition (1.9.4) still holds.
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2 Singular value decomposition and applications

2.1 Singular value decomposition

The singular value decomposition allows us to decompose a matrix in a sum of simpler
rank-one matrix. This is very useful in different contexts, since it allows us to have a
more compact and easier to store representation of data, linear operators, images, etc,
but also for the solution of inverse problems. Consider the following example (from
Strang’s book):

A =

1 1 1 1
1 1 1 1
1 1 1 1


which may represent a black image of 3×4 pixels. We can write A in the form A = uvT

where u and v are the column vectors u = [1, 1, 1]T and v = [1, 1, 1, 1]T . Of course, the
same type of decomposition holds if A were an m × n matrix: in this case it implies
that in order to store A, we only need to store m+ n values instead of mn values.

Before introducing the definition of singular value, we state two useful results on the
eigenvalues of matrix products.

Lemma 2.1.1. Let A ∈ Mm,n(K), then A∗A is hermitian and it has non-negative
eigenvalues.

Lemma 2.1.2. Let A ∈Mm,n(K) and B ∈Mn,m(K) then AB and BA have the same
non-zero eigenvalues.

Definition 2.1.3 (Singular values). The singular values of a matrix A ∈Mm,n(K) are
the square roots of the eigenvalues of A∗A.

Note that due to lemma 2.1.2, the non-zero singular values of A are also the square
roots of the eigenvalues of AA∗.

Theorem 2.1.4 (SVD). Every A ∈Mm,n(K) can be written as

A = UΣV ∗

where V ∈ Mn(K) and U ∈ Mm(K) are unitary and Σ ∈ Mm,n(K) is diagonal and of
the form

Σ =

[
Σr 0
0 0

]
where Σr ∈Mr(K) is diagonal and Σr = diag(σ1, . . . , σr) where σ1 ≥ σ2 ≥ . . . ≥ σr > 0
are the r non-zero singular values of A. The columns of U and V are, respectively, the
left and right singular vectors of A.
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Remark 2.1.5. If we denote by ui the ith column of U (interpreted as a m× 1 matrix)
and by v∗i the ith row of V (interpreted as a 1×n matrix), the SVD can be equivalently
written as follows:

A =
r∑
i=1

σiuiv
∗
i ,

i.e. as a decomposition in a sum of r rank-one matrices. Moreover, if we denote by Ur
and Vr the matrices containing the first r columns of U and V we also have

A = UrΣrV
∗
r .

This last decomposition is sometimes refferred to as economy size SVD: this is because
in applications we often do not the remaining columns of U and V .

Remark 2.1.6 (Orthonormal bases of the fundamental spaces). Notice that the SVD
gives orthonormal bases for the kernel and range of A = UΣV ∗ as well as to their
orthogonal complements. In particular, one can check that:

• rank(A) is number of nonzero singular values of A;

• Ker(A) is the span of the last n− r columns of V ;

• Ker(A)⊥ = Im(A∗) is the span of the first r columns of V ;

• Im(A) is the space of the first r columns of U .

• Im(A)⊥ = Ker(A∗) is the span of the last m− r columns of U ;

Remark 2.1.7 (Relation with diagonalization of hermitian matrices). The factorisation
of an hermitian matrix given by the spectral theorem 1.9.6 may not coincide with any
SVD decomposition of the same matrix. This is because the singular values are non-
negative real scalars whereas the eigenvalues of an hermitian matrix may be negative. A
positive hermitian matrix has non-negative eigenvalues, therefore (up to a rearrangement
of the eigenvalues) the two factorizations are equivalent.

Remark 2.1.8 (Geometric interpretation). According to the SVD theorem, any linear
map from Kn to Km may be written as the composition of a unitary transformation
(such as rotations or reflections) in Kn, followed by a diagonal transformation (stretch-
ing/scaling of the axes) from Kn to Km and a final unitary transformation in Km.

2.2 Inverse problems and regularization

The content of this section is based on the course notes of Gabriel Peyré [2].
An inverse problem consists in finding a high resolution signal from low resolution

noisy observations. These problems are usually ill-posed, e.g., they may not have a
unique solution or the map from observation to signal may not be continuos. Typically,
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the observation can be represented as a vector y ∈ F , which is the result of the appli-
cation of a linear map L ∈ L(E,F ) onto the signal x ∈ E, plus an acquisition noise
w ∈ F , i.e.,

y = Lx+ w .

The objective is to recover x knowing y and the linear map L but not the noise w.
It is often convenient to think of E and F as infinite dimensional function spaces, but

in most applications E and F are finite dimensional and this is the only setting we will
consider here. Note that even if L is invertible, when w 6= 0 it may not be appropriate
to take x̃ = L−1y as an approximation for y. This is beacause x̃ = x + L−1w but
L−1 is usually ill-conditioned, meaning that ‖L−1w‖F � ‖w‖F . We will discuss this
phenomenon in detail in the next chapter.

2.2.1 Moore-Penrose inverse

If w = 0, one can try to inverse the linear relation y = Lx to find x. If L is not invertible
this can still be done in a least square sense. From now on, we consider for simplicity
the case where E = Kn and F = Km equipped with the canonical inner products and
norms, and we identify L ∈Mm,n(K) (in the general case, one just needs to choose two
bases e and f for E and F , respectively, and replace L with its matrix representation
[L]e,f ).

First of all, since we may have y /∈ Im(L), we take

ỹ := ProjIm(L)y = arg min
z∈Im(L)

‖z − y‖2

Suppose that {u1, . . . , ur} is an orthonormal basis for Im(L) (note that r is the rank of
L), then any z can be written as z =

∑r
i=1 ziui and∥∥∥ r∑

i=1

ziui − y
∥∥∥2

=

r∑
i=1

‖ziui − y‖2 − (k − 1)‖y‖2

from which one can deduce that zi = 〈ui, y〉, or ỹ =
∑r

i=1〈ui, y〉ui. Denoting by
Ur ∈Mm,k the matrix whose ith column is ui, we also have

ỹ = UrU
∗
r y .

Solving Lx = ỹ in least square sense means solving

inf
Lx=ỹ

‖x‖2 (2.2.1)

The solution to this problem involves the Moore-Penrose inverse of L which is defined
as follows:

Definition 2.2.1 (Moore-Penrose inverse). Let L ∈ Mm,n(K) and let L = UΣV ∗ an
SVD of L, where Σ = diag(σ1, . . . , σr, 0, . . . , 0). The Moore-Penrose inverse of L is the
matrix L† := V Σ†U∗, where

Σ† :=

[
Σ−1
r 0
0 0

]
∈Mn,m , Σ−1

r = diag

(
1

σ1
, . . . ,

1

σr

)
.
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The Moore-Penrose inverse is a generalized inverse of L. If m = n and L is invertible,
one clearly has L−1 = L†.

Proposition 2.2.2. The unique solution of problem (2.2.1) is x̃ = L†y ∈ Ker(L)⊥.

Proof. First of all, observe that for any x ∈ Kn can be decomposed as x = z + r where
r ∈ Ker(L) and z ∈ Ker(L)⊥, and ‖x‖2 = ‖z‖2 + ‖r‖2. The minimisation problem is
equivalent to

inf
Lz=ỹ

‖z‖2 + ‖r‖2

and we must have r = 0. We need to find a solution to Lz = ỹ, with z ∈ Ker(L)⊥.
Using the SVD of L, we need to solve

UrΣrV
∗
r z = UrU

∗
r y .

Since U∗rUr is the identity matrix, this implies that V ∗r z = Σ−1
r U∗r y. Now z ∈ Ker(L)⊥

if and only if there exists a vector α ∈ Kr such that z =
∑r

i=1 αivi = Vrα. Since V ∗r Vr
is the identity matrix, we have

α = Σ−1
r U∗r y =⇒ z = VrΣ

−1
r U∗r y .

2.2.2 Ridge regression

If the noise w 6= 0, then it is not advisable to use the Moore-Penrose to recover the
signal x. For example, using the notation of the previous section, if w = αur for some
α ∈ R then

‖L†y − L†Lx‖ = ‖L†w‖ =
|α|
σr

which may be very large if σr (the smallest non-zero singular value) is small. In this
case L†y may be very far from the solution we would obtain without noise, even if this
latter is small (i.e., even if |α| is small).

Instead of solving the problem with the Moore-Penrose inverse, let us consider the
following variational problem

inf
x
‖Lx− y‖2 + λ‖x‖2 , (2.2.2)

where λ > 0 is a parameter multiplying a quadratic regularization term. We can find
the solution of such problem following similar steps as those in the proof of proposition
2.2.2. Specifically, if we decompose x = z + r with z ∈ Ker(L)⊥ and r ∈ Ker(L), we
immediately see that we must have r = 0 and therefore we need to solve

inf
x∈Ker(L)⊥

‖Lx− ỹ‖2 + ‖y′‖2 + λ‖x‖2
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where we have also used the decomposition y = ỹ+y′ where ỹ ∈ Im(L) and y′ ∈ Im(L)⊥.
Setting x = Vrα and neglecting the term ‖y′‖2 which does not depend on x, we get

inf
α∈Kr

‖LVrα− UrU∗r y‖2 + λ‖Vrα‖2 , (2.2.3)

Using the SVD of L = UrΣrV
∗
r , and the fact that V ∗r Vr and U∗rUr are the identity

matrix, each coordinate αi of the vector α needs to minimize

(σiαi − (U∗r y)i)
2 + λα2

i

Hence, we obtain that the unique solution of problem (2.2.3) is

α = diag

(
σ1

σ2
1 + λ

, . . . ,
σr

σ2
r + λ

)
U∗r y .

We have proven the following result:

Proposition 2.2.3. Problem (2.2.2) admits a unique solution given by x̃ = L†λy, where

L†λ := Vrdiag

(
σ1

σ2
1 + λ

, . . . ,
σr

σ2
r + λ

)
U∗r .

Remark 2.2.4. A more general approach, which bypasses the definition of an auxiliary
variational problem, consists in replacing L† = VrΣ

−1
r U∗r with

L†λ := Vrdiag(µλ(σ1), . . . , µλ(σr))U
∗
r ,

where µλ : [0,∞)→ [0,∞) is a function depending on a regularization parameter λ > 0,
such that

µλ(σ) ≤ Cλ , lim
λ→0

µλ(σ) =
1

σ
,

where Cλ > 0 is a constant depending on λ. The quadratic regularization corresponds
to the choice:

µλ(σ) =
σ

σ2 + λ

Remark 2.2.5. Note that the solution x̃ obtained by the Moore-Penrose inverse or
the quadratic regularization belongs to Ker(L)⊥. This means that we have no hope of
reconstructing a signal that is not orthogonal to Ker(L). This fact can be alleviated
by means of more general regularization terms which may used to include additional
information on the solution such as sparsity.

Example (Deconvolution via the DFT). Consider the linear operator convh ∈ L(Kn,Kn)
performing the convolution with a vector h veryfying (1.9.2), so that its DFT, denoted
ĥ, is a real vector. The deconvolution of the observed signal y via the Moore-Penrose
inverse amounts to setting:

x = DFT−1(x̂) , x̂i =


ŷi√
nĥi

if ĥi 6= 0

0 otherwise
,
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whereas the deconvolution obtained via the quadratic regularization is given by

x = DFT−1(x̂) , x̂i =

√
nĥi

n|ĥi|2 + λ
ŷi .

Remark 2.2.6 (Tikhonov regularization). A more general form of variational reg-
ularization is the following

inf
x
‖Lx− y‖2 + λ‖Bx‖2 ,

where B ∈ Mn(K). The matrix B can be chosen to enforce desired properties on the
solution x. For example, if x is a time varying signal, a typical choice for B is a discrete
version of the time derivative, which enforces smoothness on the solution.

2.3 Principal component analysis

Given a set of data valued in a m-dimensional vector space E, the idea of the princi-
pal component analysis it to find the lower dimensional subspaces of E such that the
orthogonal projection of the data vectors onto such subspaces has the largest possible
variance.

Suppose that we are given n realization of an m-dimensional random vector, which
we denote X = {x1, . . . , xn} ⊂ Km. For example these could be obtained by repeating
n times the same experiment. The sample mean and variance are given by

Avg(X ) =
1

n

n∑
i=1

xi , Var(X ) =
1

n− 1

n∑
i=1

‖xi −Avg(X )‖22 .

Let us now introduce the matrix X ∈ Mm,n(K) whose columns are the n observed
realizations of the random vector, normalized to have zero sample mean, i.e.

X =

 x1 −Avg(X ) x2 −Avg(X ) · · · xn −Avg(X )

 (2.3.1)

The sample covariance matrix is given by

S =
1

n− 1
XX∗ ∈Mm,m(K)

and note that Var(X ) = tr(S), the trace of the matrix S.
Let us now consider the projection of the data on the subspace spanned by a unit

vector p1 ∈ Km, X̃ = {x̃1, . . . , x̃n} where x̃i = 〈p1, xi〉p1 and with 〈·, ·〉 being the canoni-
cal inner product. The sample mean of the new set is simply Avg(X̃ ) = 〈p1,Avg(X )〉p1,
whereas the sample variance is

Var(X̃ ) =
1

n− 1

n∑
i=1

‖x̃i −Avg(X̃ )‖22 =
1

n− 1

n∑
i=1

|〈p1, xi −Avg(X )〉|2

=
1

n− 1
‖X∗p1‖22 = 〈Sp1, p1〉 .
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The first principal component is the direction p1 such that the variance of the projected
data is maximal. This is therefore the solution to the maximization problem

sup

{
1

n− 1
‖X∗p1‖22 : ‖p1‖2 = 1

}
. (2.3.2)

Given an SVD decomposition of X = UΣV ∗, we can express any vector p1 in terms of
the orthonormal basis {u1, . . . , um} given by the columns of U , i.e. p1 =

∑m
j=1 p1,juj

and we have that

‖p1‖22 =
n∑
j=1

p2
1,j = 1

Threfore

‖X∗p1‖22 =

∥∥∥∥∥
r∑
i=1

viσi〈ui, p1〉

∥∥∥∥∥
2

2

=

r∑
i=1

σ2
i p

2
1,i ≤ σ2

1 .

If σ1 > σ2, the inequality is an equality if and only if p1 = u1, which is therefore the
unique first principal component. On the other hand, if the first k > 1 singular values
coincide than any unit vector spanned by the first k right singular vectors {u1, . . . , uk}
solves problem (2.3.2).

The following principal components can be defined in an iterative fashion. The kth
principal component is the direction pk, orthogonal to first k − 1 principal components
p1, . . . pk−1, such that the data projected on the space spanned by pk has maximal
variance. One can verify that the space spanned by the first k principal components is
the k-dimensional subspace of Km such that the projection of the data on such space
has maximal variance. As a matter of fact, the variance of X̃ , the projection of X onto
the space spanned by the orthonormal set {p1, . . . , pk} is

Var(X̃ ) =
1

n− 1

k∑
i=1

‖X∗pi‖22 .
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3 Matrix norms, low rank approximations and

condition number

3.1 Matrix norms

The space of matricesMm,n(K) is isomorphic to Kmn, since a matrix inMm,n(K) can be
simply regarded as an ordered collection of mn values in K and such an identification is
linear. Therefore, we could define norms onMm,n(K) simply using the norms we know
on Kmn. However, this approach gives us norms that in general are not well-suited for
computations, since they do not behave well under the operations of matrix-vector and
matrix-matrix multiplication. The two main properties that are specific for norms on
Mm,n(K) are given in the following definitions.

Definition 3.1.1 (Consistent/compatible norm). Let ‖ · ‖ be a norm on Kn, n ≥ 1. A
norm ‖ · ‖ on Mm,n(K) is consistent (or compatible) with respect to ‖ · ‖ if

‖Au‖ ≤ ‖A‖‖u‖ , ∀u ∈ Kn .

Definition 3.1.2 (Sub-multiplicative/matrix norm). A norm ‖ · ‖ onMm,n(K) is sub-
multiplicative if for all m,n, p ≥ 1,

‖AB‖ ≤ ‖A‖‖B‖ , ∀A ∈Mm,p(K) , B ∈Mp,n(K) . (3.1.1)

In this case, we say that ‖ · ‖ is a matrix norm.

Note that equation (3.1.1) in the definition of a sub-multiplicative norm is to be
regarded as a relation between three different norms, one defined on Mm,p(K), one on
Mp,n(K) and another one on Mm,n(K).

Remark 3.1.3. Two important points:

1. Not all norms are sub-multiplicative: take for example,

‖A‖∆ := max
i,j
|ai,j |,

and consider the case

A = B =

[
1 1
1 1

]
.

2. All sub-multiplicative norms are compatible with respect to some vector norm. To
see this, it suffices taking n = 1 in equation (3.1.1) and regarding B and AB as
vectors in Kp and Km, respectively.
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One of the most used norms in applications is the Frobenius norm, which can be
obtained interpreting a matrix Mm,n(K) as a vector in Kmn and applying the vector
2-norm.

Definition 3.1.4 (Frobenius norm). The Frobenius norm of A ∈ Mm,n(K) is defined
as follows:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|ai,j |2

As in the vector case, the Frobenius norm is the norm associated with an inner
product (which coincides with the canonical inner product on Kmn) and that can be
written as follows:

〈·, ·〉 : (A,B) ∈Mm,n(K)×Mm,n(K)→ tr(A∗B) ∈ K , (3.1.2)

where tr(·) denotes the trace operator.

Remark 3.1.5. As a consequence of Cauchy-Schwarz inequality, the Frobenius norm
is sub-multiplicative, and moreover it is compatible with respect to the 2-norm ‖ · ‖2 on
Kn.

We can define matrix norms in a different way starting from a norm on Kn, as shown
in the following definition.

Definition 3.1.6 (Induced norm). Let ‖ · ‖ be a norm on Kn. The norm induced norm
on Mm,n(K) associated with it is given by:

‖A‖ := sup{‖Ax‖ , x ∈ Kn , ‖x‖ = 1}

It is easy to check that this definition can be expressed in other equivalent ways. In
particular, one can prove that the sup is attained and moreover

‖A‖ = max{‖Ax‖ , x ∈ Kn , ‖x‖ = 1} = max{‖Ax‖ , x ∈ Kn , ‖x‖ ≤ 1} ,

or also

‖A‖ = max

{
‖Ax‖
‖x‖

, x 6= 0

}
.

Proposition 3.1.7 (Properties of induced norms). Let ‖ · ‖ be a norm on Mm,n(K)
induced by a norm ‖ · ‖ on Kn:

• ‖ · ‖ is consistent with respect to the associated vector norm;

• ‖ · ‖ is sub-multiplicative;

• ‖I‖ = 1.

Note that the Frobenius norm cannot be induced by any norm, since ‖I‖F =
√
n if

n is the identity matrix on Mn(K).
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Definition 3.1.8 (Norms induced by the p-norms). The norms on Mm,n(K) induced
by the p-norms are defined as follows

‖A‖p := max

{
‖Ax‖p
‖x‖p

, x 6= 0

}
.

Remark 3.1.9. Using the SVD of A (see Section 3.2.10) we find

‖A‖2 = σ1(A)

where σ1(A) is the largest singular value of A. The norm ‖·‖2 is also called the spectral
norm.

Remark 3.1.10 (Spectral radius). We observe that the map A 7→ ρ(A) defined on
square matrices is 1-homogeneous:

ρ(αA) = |α|ρ(A) , ∀α ∈ K .

However it is not a norm. In fact:

• if T is any triangular matrix with zero diagonal ρ(T ) = 0, and

• the triangular inequality does not hold, e.g.:

A =

[
0 1
0 0

]
, 0 = ρ(A) + ρ(AT ) < ρ(A+AT ) = 1 .

3.2 Unitarily invariant norms and best low rank approxi-
mations

Definition 3.2.1 (Unitarily invariant norms). A norm ‖ · ‖ on Mm,n(K) is unitarily
invariant if and only if for any unitary matrix Q ∈Mm(K) and Z ∈Mn(Z) we have

‖QAZ‖ = ‖A‖ , ∀A ∈Mm,n(Z).

The Frobenius norm ‖ · ‖F and the induced norm ‖ · ‖2 are both unitarily invariant.
This follows from the inner product definition (3.1.2) for the Frobenius norm and from
remark (3.1.9) for the ‖ · ‖2 norm. Other classical examples of unitarily invariant norm
are the p-Schatten norms

Definition 3.2.2 (Schatten p-norms). Let σ(A) = (σ1, . . . , σn), the vector of singualr
values of A ∈Mm,n(K). Then, the Schatten p-norm of A is defined by

‖A‖(p) := ‖σ(A)‖p .

The Frobenius and spectral norm are particular cases of Schatten norms. We have

‖A‖F = ‖A‖(2) =
√
σ1(A)2 + . . .+ σn(A)2 , ‖A‖2 = ‖A‖(∞) = σ1(A)

The first equality for the Frobenius norm can be seen as a particular (although stronger)
case of the following result.
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Theorem 3.2.3 (Von Neumann’s trace inequality). Let A,B ∈ Mm,n(K), and denote
by σ(A) = (σi(A))i and σ(B) = (σi(A))i the ordered vectors of singular values of A and
B respectively, then

|〈A,B〉| = |tr(A∗B)| ≤ σ1(A)σ1(B) + . . .+ σn(A)σn(B) .

Corollary 3.2.4. For any matrix A,B ∈Mm,n(K)

‖A−B‖F ≥ ‖σ(A)− σ(B)‖2 .

Given a matrix A ∈Mm,n(K), suppose that (one of) its SVD is given by A = UΣV ∗.
For any 0 ≤ k < n, define the truncated version of such SVD by

Tk(A) := UkΣkV
∗
k

where Σk = diag(σ1, . . . , σk) its the diagonal matrix with elements given by the first
k largest singular values of A, and Uk and Vk are the matrices formed by the first k
columns of U and V respectively.

Remark 3.2.5. The truncated SVD Tk(A) is uniquely defined if and only if σk+1(A) <
σk(A). In fact, if σk+1(A) = σk(A), one may combine the corresponding singular vectors
to form different SVDs of A which give rise to different matrices Tk(A). For example, the
identity matrix I ∈Mn(K) can be written in the form I = QQ∗ for any unitary matrix
Q, which constitute different SVDs of I. For each of these, we can set Tk(I) = QkQ

∗
k

where Qk is the matrix formed by the first k columns of Q.

Remark 3.2.6. For any unitarily invariant norm ‖ · ‖,

‖Tk(A)−A‖ = ‖diag(0, . . . , 0, σk+1, . . . , σn)‖.

In particular,

‖Tk(A)−A‖F =
√
σ2
k+1(A) + . . .+ σ2

n(A) , ‖Tk(A)−A‖2 = σk+1(A) . (3.2.1)

The matrix Tk(A) can be understood can be understood as the best approximation
of A of rank less or equal to k, in the following sense.

Theorem 3.2.7. For any A ∈Mm,n(K), and any unitarily invariant norm ‖ · ‖,

‖A− Tk(A)‖ = min{‖A−B‖ , rank(B) ≤ k} . (3.2.2)

Remark 3.2.8. Using either the spectral or the Frobenius norm in theorem 3.2.7, by
equation (3.2.1) we find that the distance of A from the set of singular matrices is
precisely σn(A).

Remark 3.2.9 (Uniqueness). Note that the set of matrices A with rank(A) ≤ k is not
convex, and consequently Tk(A) may not be the unique solution of (3.2.2). In fact:
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• When using the Frobenius norm, one can deduce from Corollary 3.2.4 that the
truncated SVDs of A, Tk(A), constitute all solutions of the minimization problem
(3.2.2). In particular, in this case, such problem admits a unique solution if and
only if σk+1(A) < σk(A).

• When using the spectral norm, problem (3.2.2) has a unique solution if and only
if σk+1(A) = 0 and this is given by Tk(A) = A. If this is not the case, one has an
infinite number of solutions. For example, for any 0 ≤ δ ≤ σk+1(A),

Uk(Σk − δIk)V ∗k

is also a minimizer of (3.2.2).

Remark 3.2.10 (Relation with the PCA). In the setting of Section , given a data set of
n m-dimensional observations, one can construct a matrix X ∈Mm,n(K) as in equation
(2.3.1) whose column are the observed vectors normalised so that the sample mean is
zero. Then, Tk(X) is the orthogonal projection of the normalized data-set onto the space
generated by the first k principal components. In fact, assuming that X = UΣV ∗, such
projection is given by

X̃ := UkU
∗
kX = Uk[Ik|0] ΣV ∗ = Tk(X).

where [Ik|0] ∈Mm,n(K) and Ik ∈Mk(K) is the identity matrix.

Remark 3.2.11 (Stability of low rank approximations). Note that if ‖ · ‖ is unitarily
invariant and A has rank r ≤ k, then applying the triangular inequality and then using
Theorem 3.2.7, we have

‖Tk(A+ E)−A‖ ≤ ‖Tk(A+ E)− (A+ E)‖+ ‖E‖ ≤ 2‖E‖ .

Then, if A is arbitrary

‖Tk(A+ E)− Tk(A)‖ = ‖Tk(Tk(A) + (A+ E − Tk(A)))− Tk(A)‖
≤ 2‖(A+ E − Tk(A))‖ ≤ 2‖E‖+ 2‖A− Tk(A)‖ .

This means that if ‖A−Tk(A)‖ is small and E represents small noise, then the perturbed
truncated SVD Tk(A+ E) is close to Tk(A).

3.3 Condition number of a matrix

Consider the linear system:
Ax = b (3.3.1)

In practice, its solution is never exact because of:

• errors in the data: evaluation of the coefficients of A or b;

• rounding errors: floating point represenation of numbers on machine.
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In practice we solve:
(A+ δA)y = b+ δb

In the following, our aim is to to quantify how far y is from x.

Remark 3.3.1 (Stability analysis via the SVD). Suppose that A ∈Mn(Z) is invertible
and its SVD is given by A = Udiag(σ1, . . . , σn)V ∗. Then the solution to system is given
by

y =
n∑
i=1

1

σi
〈ui, b〉vi ,

where ui and vi are the ith columns of U and V , respectively. We deduce that if we let
σn → 0, ‖y‖ → +∞, and therefore the system becomes less and less stable by reducing
σn. This is expected given the meaning of σn (see remark 3.2.8).

Definition 3.3.2 (Condition number). Let ‖ · ‖ be a matrix norm on Mn(K) and A
be an invertible matrix. The condition number of A is the quantity:

cond(A) := ‖A‖‖A−1‖ .

The condition number associate with the induced p-norms ‖ · ‖p is denoted condp(A).

Example (Intersection of lines). Consider the problem of finding the intersection of two
almost parallel lines: {

x+ (1 + ε)y = 1 ,
(1 + ε)x+ y = 1 .

where ε is a small constant. Note that a small change in ε determines a dramatic change
in the intersection point. In this case, we have

A =

[
1 1 + ε

1 + ε 1

]
, cond2(A) = ρ(A)ρ(A−1)

(note that A−1 is symmetric since (A−1)T = (AT )−1). Then cond(A) = (2 + ε)/ε→∞
as ε→ 0.

Theorem 3.3.3. Let A ∈ Mn(K) be an invertible matrix, b ∈ Kn \ {0}. Let ‖ · ‖ be
a norm on Kn, we denote by ‖ · ‖ also the induced norm on Mn(K). If x ∈ Kn solves
Ax = b and δx ∈ Kn is such that

A(x+ δx) = b+ δb

for a given δb ∈ Kn, then
‖δx‖
‖x‖

≤ cond(A)
‖δb‖
‖b‖

Theorem 3.3.4. Let A ∈ Mn(K) be an invertible matrix, b ∈ Kn. Let ‖ · ‖ be a norm
on Kn, we denote by ‖ · ‖ also the induced norm on Mn(K). If x ∈ Kn solves Ax = b
and δx ∈ Kn is such that

(A+ δA)(x+ δx) = b
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then
‖δx‖
‖x+ δx‖

≤ cond(A)
‖δA‖
‖A‖

.

Remark 3.3.5 (Properties of the condition number). For any invertible matrix A,

• cond(A) ≥ 1 ,

• ∀α ∈ K∗, cond(αA) = cond(A) ,

• cond2(A) = σn(A)/σ1(A), where σ1(A) and σn(A) are respectively the largest and
the smallest singular values of A,

• For A hermitian cond2(A) = maxi |λi|/mini |λi|, where {λi}i are the eignevalues
of A,

• For any unitary transformation U , cond2(AU) = cond2(UA) = cond2(U).

Remark 3.3.6. The determinant is not a good indicator of the condition number of a
matrix. Take, for example,

A′ =
1

ε
A =

1

ε

[
1 1 + ε

1 + ε 1

]
.
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